- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Geelen, Rudy (4)
-
Willcox, Karen (3)
-
Balzano, Laura (2)
-
Wright, Stephen (2)
-
Guilleminot, Johann (1)
-
Yong, Jin Yi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Geelen, Rudy; Balzano, Laura; Wright, Stephen; Willcox, Karen (, Chaos: An Interdisciplinary Journal of Nonlinear Science)We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.more » « less
-
Geelen, Rudy; Balzano, Laura; Willcox, Karen (, 62nd IEEE Conference on Decision and Control (CDC))We present a novel framework for learning cost-efficient latent representations in problems with highdimensional state spaces through nonlinear dimension reduction. By enriching linear state approximations with low-order polynomial terms we account for key nonlinear interactions existing in the data thereby reducing the problem’s intrinsic dimensionality. Two methods are introduced for learning the representation of such low-dimensional, polynomial manifolds for embedding the data. The manifold parametrization coefficients can be obtained by regression via either a proper orthogonal decomposition or an alternating minimization based approach. Our numerical results focus on the one-dimensional Korteweg-de Vries equation where accounting for nonlinear correlations in the data was found to lower the representation error by up to two orders of magnitude compared to linear dimension reduction techniques.more » « less
-
Geelen, Rudy; Wright, Stephen; Willcox, Karen (, Computer Methods in Applied Mechanics and Engineering)
An official website of the United States government
